A Hypergraph-Embedded Convolutional Neural Network for Ice Crystal Particle Habit Classification

نویسندگان

چکیده

In the field of weather modification, it is important to accurately identify ice crystal particles in clouds. When habits are correctly identified, cloud structure can be further understood and seeding other methods modification used change microstructure cloud. Consequently, phenomena changed at an appropriate time support human production quality life. However, morphology varied. Traditional particle classification based on expert experience, which subjective unreliable for identification categories by threshold setting. addition, existing deep learning faced with problem improving performance datasets unbalanced sample distributions. Therefore, we designed a Convolutional Neural Network (CNN) embedded hypergraph convolution module, named Hy-INet. The module effectively capture information from hypergraphs constructed local global feature spaces learn features small samples that have numbers. Experimental results demonstrate proposed method achieve superior task habits.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Classification of crystal structure using a convolutional neural network

A deep machine-learning technique based on a convolutional neural network (CNN) is introduced. It has been used for the classification of powder X-ray diffraction (XRD) patterns in terms of crystal system, extinction group and space group. About 150 000 powder XRD patterns were collected and used as input for the CNN with no handcrafted engineering involved, and thereby an appropriate CNN archi...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

Convolutional Neural Network for Image Classification

Neural network, as a fundamental classification algorithm, is widely used in many image classification issues. With the rapid development of high performance computing device and parallel computing devices, convolutional neural network also draws increasingly more attention from many researchers in this area. In this project, we deduced the theory behind back-propagation neural network and impl...

متن کامل

Gender classification: a convolutional neural network approach

An approach using a convolutional neural network (CNN) is proposed for real-time gender classification based on facial images. The proposed CNN architecture exhibits a much reduced design complexity when compared with other CNN solutions applied in pattern recognition. The number of processing layers in the CNN is reduced to only four by fusing the convolutional and subsampling layers. Unlike i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Intelligent Automation and Soft Computing

سال: 2021

ISSN: ['2326-005X', '1079-8587']

DOI: https://doi.org/10.32604/iasc.2021.018190